Online dictionary learning algorithm with periodic updates and its application to image denoising
نویسنده
چکیده
We introduce a coe cient update procedure into existing batch and online dictionary learning algorithms. We rst propose an algorithm which is a coe cient updated version of the Method of Optimal Directions (MOD) dictionary learning algorithm (DLA). The MOD algorithm with coe cient updates presents a computationally expensive dictionary learning iteration with high convergence rate. Secondly, we present a periodically coe cient updated version of the online Recursive Least Squares (RLS)-DLA, where the data is used sequentially to gradually improve the learned dictionary. The developed algorithm provides a periodical update improvement over the RLS-DLA, and we call it as the Periodically Updated RLS Estimate (PURE) algorithm for dictionary learning. The performance of the proposed DLAs in synthetic dictionary learning and image denoising settings demonstrates that the coe cient update procedure improves the dictionary learning ability.
منابع مشابه
A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملSparse coding and dictionary learning for image understanding
Sparse coding---that is, modeling data vectors as sparse linear combinations of dictionary elements---is widely used in machine learning, neuroscience, signal processing, and statistics. This talk addresses the problem of learning the dictionary, adapting it to specific data and image understanding tasks. In particular, I will present a fast on-line approach to unsupervised dictionary learning ...
متن کاملVIDOSAT: High-dimensional Sparsifying Transform Learning for Online Video Denoising
Techniques exploiting the sparsity of images in a transform domain have been effective for various applications in image and video processing. Transform learning methods involve cheap computations and have been demonstrated to perform well in applications such as image denoising and medical image reconstruction. Recently, we proposed methods for online learning of sparsifying transforms from st...
متن کاملFRIST - Flipping and Rotation Invariant Sparsifying Transform Learning and Applications
Features based on sparse representation, especially using the synthesis dictionary model, have been heavily exploited in signal processing and computer vision. However, synthesis dictionary learning typically involves NP-hard sparse coding and expensive learning steps. Recently, sparsifying transform learning received interest for its cheap computation and its optimal updates in the alternating...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014